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ABSTRACT

Accurate probabilistic forecasting of wind power is essential for maintaining grid stability and en-
abling efficient integration of renewable energy sources. Gaussian Process (GP) models offer a
principled framework for quantifying uncertainty; however, conventional approaches rely on station-
ary kernels, which are inadequate for modeling the inherently non-stationary nature of wind speed and
power output. We propose a non-stationary GP framework that incorporates the generalized spectral
mixture (GSM) kernel, enabling the model to capture time-varying patterns and heteroscedastic
behaviors in wind speed and wind power data. We evaluate the performance of the proposed model
on real-world SCADA data across short-, medium-, and long-term forecasting horizons. Compared
to standard radial basis function and spectral mixture kernels, the GSM-based model outperforms,
particularly in short-term forecasts. These results highlight the necessity of modeling non-stationarity
in wind power forecasting and demonstrate the practical value of non-stationary GP models in
operational settings.

Keywords Probabilistic forecasting - wind energy - Gaussian processes - non-stationary kernels - generalized spectral
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1 Introduction

Wind power plays a pivotal role in the global transition toward renewable energy. By the end of 2024, the total installed
wind power capacity worldwide had reached approximately 1,136 gigawatts (GW), representing an annual increase of
117 GW compared to 2023 [1]]. However, the variable and intermittent nature of wind generation introduces significant
operational challenges to power systems. Therefore, accurate probabilistic wind power forecasting is essential to
ensure grid stability and efficient resource planning. Recent reviews have highlighted the growing importance of hybrid
models, probabilistic methods, and deep learning to advance wind power forecasting techniques [2]. In particular,
Lagos et al. [3] performed a literature review demonstrating the increasing scientific research toward probabilistic
forecasting methods, hybrid modeling approaches, and uncertainty quantification techniques in the wind energy sector.
We focus exclusively on probabilistic forecasting approaches, which generate full predictive distributions rather than
point estimates. This allows for uncertainty quantification, which is essential for risk-aware decision-making in power
system operations.

Gaussian Process (GP) methods have been extensively utilized for wind power forecasting. Rogers et al. [4]] proposed
a heteroscedastic GP model that captures the input-dependent variance of wind turbine outputs, while Pandit ez al.
[S] incorporated turbine operational variables to enhance GP-based forecasts. Chen et al. [6l] integrated GP with
numerical weather prediction outputs, achieving improved forecast accuracy. However, standard GPs rely on default
stationary kernels, which are inadequate for capturing the complex dynamics of wind data. Wind speed and power
output often exhibit pronounced non-stationary behavior due to seasonal variations, atmospheric turbulence and local
weather dynamics. As such, stationary kernels are not appropriate to model these fluctuations effectively.

To address challenges related to non-Gaussian uncertainties and time-varying characteristics, Kou et al. [[7]] proposed a
sparse online warped GP model capable of adaptively learning non-Gaussian probabilistic distributions with reduced
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computational cost. Nevertheless, their approach primarily focuses on output warping and online adaptation, while
maintaining a stationary covariance structure.

Quantile regression-based methods have seen wide application. Yu et al. [8] proposed spatiotemporal quantile regression
for regional wind power probabilistic forecasting. Later, Yu et al. [9] introduced a deep quantile regression model to
better capture non-linear dependencies. Zhou et al. [[10] proposed composite conditional non-linear quantile regression
to improve the accuracy of prediction intervals for very short-term regional wind power forecasting. Other probabilistic
modeling approaches have also emerged: Liao et al. [11] applied generative moment matching network to create
realistic probabilistic scenarios without assuming specific distribution forms, while Zhang et al. [12] proposed an
improved deep mixture density network to represent multimodal output distributions for wind power.

Several classical statistical approaches have also been introduced. Carpinone et al. [[13]] adopted Markov chain models
for very short-term probabilistic forecasting. Dong er al. [14]] utilized multiclass autoregressive moving average
modeling for wind power prediction. Ma et al. [15] explored empirical dynamic modeling to reconstruct dynamic
system behaviors directly from observed data.

Hybrid machine learning approaches are increasingly popular. Huang et al. [16] proposed an a priori-guided and
data-driven hybrid framework to combine physical insights with data-driven learning. Gu et al. [17] proposed a hybrid
framework combining fuzzy C-means clustering, whale optimization algorithm-optimized extreme learning machine
for wind power forecasting, and Gaussian mixture models for uncertainty quantification. Wang et al. 18] developed
a hybrid deep neural network framework focused on improving probabilistic forecasts. Transfer learning for wind
forecasting has been explored by Liu and Wang [[19], who applied multi-layer extreme learning machines to handle
situations with limited training data. In addition, Fiocchi e al. [20] proposed a probabilistic multilayer perceptron
trained on SCADA data with heteroscedastic outputs and transfer learning across turbines for condition monitoring,
demonstrating improved performance over other probabilistic models.

Dong et al. [21]] used spatiotemporal convolutional networks for forecasting the outputs of multiple wind farms.
Krannichfeldt er al. [22]] proposed an online ensemble approach for probabilistic wind power forecasting, capable of
dynamically adapting to data changes. Eikeland et al. [23]] developed a deep learning-based probabilistic forecasting
model suitable for Arctic regions characterized by complex topography. Zhang et al. [24] proposed a multi-source
temporal attention network that integrates heterogeneous numerical weather prediction data and historical measurements
using temporal attention mechanisms to improve regional wind power probabilistic forecasting.

Che et al. [25] proposed a spatial-temporal probabilistic forecasting method based on multi-scale feature extraction
and dynamic feature weighting, achieving improved performance in ultra-short-term wind power prediction settings.
Meanwhile, Zhang et al. [26]] developed a hybrid intelligent framework that integrates deterministic and probabilistic
prediction approaches to enhance the accuracy and reliability of wind power forecasting.

It is important to note that while all the studies discussed adopt probabilistic forecasting methodologies, they do
not focus on the same forecasting horizons. Wind power forecasting is typically categorized into different horizons
according to application requirements. Long-term forecasting, spanning several months to years, supports strategic
planning and wind farm development. Medium-term forecasting, covering several days up to a week, is useful for
maintenance scheduling and operational planning. Short-term and ultra-short-term forecasting, ranging from a few
hours to minutes ahead, plays a critical role in real-time grid balancing and dispatch.

While the aforementioned approaches have advanced probabilistic and deep learning methods for wind forecasting, the
challenge of modeling non-stationarity within the GP framework remains largely unaddressed. Most existing GP-based
methods rely on stationary kernels or limited modifications that fail to capture time-varying input—output relationships.
In contrast, our proposed model explicitly incorporates a non-stationary covariance function, enabling appropriate
modeling of the dynamic changes in the input—output relationship across varying wind conditions and timescales.

This work presents a probabilistic wind power forecasting framework that operates across multiple timescales, including
long-term, medium-term, and short-term horizons. Using real-world supervisory control and data acquisition (SCADA)
data, we address fundamental modeling limitations in prior work by directly modeling the dynamic, non-stationary
nature of wind energy systems. The main contributions of the paper are as follows:

* A non-stationary GP framework is proposed for probabilistic wind power forecasting, explicitly modeling
non-stationarity at the covariance level for wind speed and power time series.

* The necessity of modeling non-stationarity is demonstrated through improved point prediction accuracy and
probabilistic scores, outperforming stationary GP baselines.

* We benchmark the model under realistic SCADA constraints and pre-processing steps, reflecting deployment
conditions in operational wind farms.
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* We demonstrate consistent performance improvements across long-, medium-, and short-term horizons on real
SCADA data.

The remainder of this paper is structured as follows. Section[2]describes the proposed non-stationary GP framework and
details the baseline models used for comparison. Section [3|outlines the experimental setup, including data sources and
forecasting horizons, and presents the results of our comparative evaluation. Section ] summarizes the main findings.

2 Methodology

We propose a non-stationary GP framework for probabilistic wind power forecasting, designed to model the non-
stationary dynamics of wind speed and power output. Unlike conventional GP approaches that rely on stationary kernels,
our method incorporates a non-stationary covariance structure, allowing the model to adapt to the peculiarities of the
problem.

In this section, we first review the foundations of GP regression, followed by a description of the baseline kernels and
the proposed non-stationary kernel. We then present the evaluation metrics used to assess model performance across
both short-term and long-term forecasting horizons. In Section 3] we conduct a comparative evaluation using real-world
SCADA data.

2.1 Gaussian process (GP) regression

In GP regression, we are given a data vector y = {y; {il € RY whose entries are noisy evaluations of some function
f() on a collection of D-dimensional vectors X = {x;}}¥, € RV*P je. y; is a noisy observation of f(x;). We
further assume that the noise y; — f(x;) is independent Gaussian with mean 0 and variance o2. Moreover, we place
a GP prior over f(-), with mean function y(-) and covariance kernel kg (-, -), so that the collection of function values
F(X) == [f(x1),..., f(xn)]" has a joint Gaussian distribution

F(X) ~ N(u(X), K(X, X)),

where p1(X) = [p(x1), ..., p(xn)]T, and K (X, X);; = ko(xi,%;), for all 4, 5. Setting A = K(X, X) + 0%Iy, the
log-marginal likelihood of the data becomes

log p(y1X) = 5 (v — p(X)) Ay — p(X) ~ 3 log 4] - = log(2n)

and the future observations y* with covariates X * have a normal conditional distribution with mean and variance given
by

E(y*ly) = p(X*) + K(X*, X)A™ Ny — p(X)),
V(y*ly) = K(X*, X*) - K(X*, X)AT'K(X, X*).

2.2 Kernel design and selection

The choice of kernel function is crucial for the performance of GP regression, influencing function smoothness,
periodicity and generalization. In the context of wind power forecasting, where complex and non-stationary patterns are
present, selecting an appropriate kernel becomes even more critical. In this section, we describe the baseline kernel
functions used in our experiments, followed by the proposed non-stationary kernel.

2.2.1 Radial basis function kernel

We first used the radial basis function (RBF) kernel, also known as the squared exponential kernel, as a baseline. The
RBF kernel is defined as:

18 (x Tjq)?
2 i,d — Lj.d
krpr(xi,%;|0) = o} exp (—2 Z @1) ,
d=1
where 0 = {O']%, 01,0y, ...,0p} represents the kernel hyperparameters with ¢4 denoting the length-scale parameters

and O'J% representing the output variance.
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2.2.2 Spectral mixture kernel

To introduce greater flexibility, we considered the Spectral Mixture (SM) kernel [27]], which decomposes a stationary
kernel into spectral densities using Bochner’s theorem [28]]. To express the kernel in terms of the relative location
between inputs, we define 7 as the difference between two input vectors, T = x; — X; € RP. This ensures that the
kernel is stationary, which means that it depends only on the relative distance between the inputs rather than their
absolute locations. With this definition, the SM kernel is given by:

Q D
ksm(T]0) = Z wq cos(2mpl ) H exp(—2n2730®),

q=1 d=1

where () is the number of mixture components in the spectral mixture, w, represents the relative contribution of the
g-th mixture component, p,, is a D-dimensional vector of spectral means, 74 is the difference along the d-th dimension

between the two inputs and véd) represents the spectral variance of the ¢g-th component along dimension d, controlling

how quickly correlations decay along each input dimension. In addition, uq_l represents the periodicity of each

—1/2
component and l/éd) represents the length scale of the g-th component along dimension d, describing how rapidly

function values change with respect to inputs x.

A key trade-off of the increased flexibility provided by the SM kernel is the larger number of hyperparameters.

Specifically, each mixture component introduces three hyperparameters, wg, 4, and v((ld). Since the kernel is defined as

a sum over () mixture components, this results in a total of () x 3 hyperparameters, in addition to the noise variance
parameter. This high-dimensional parameter space increases the risk of overfitting in regression models and makes the
optimization process more sensitive to initialization compared to standard kernels with fewer hyperparameters. An
approach to alleviate this challenge is to train the GP model with multiple initializations and select the best-performing
result, thereby exploring a broader range of local optima.

While the SM kernel offers greater flexibility than standard kernels, it still assumes stationarity—that is, it models
spectral properties as constant across the input space. This can be a limiting assumption in real-world scenarios where
the underlying function exhibits non-stationary behavior. In such settings, patterns in wind speed and power output can
vary significantly over time due to changing environmental conditions, making a stationary model insufficient.

2.2.3 Generalized spectral mixture kernel

To address this limitation, we incorporate the Generalized Spectral Mixture (GSM) kernel [29], a non-stationary
extension of the SM kernel that allows input-dependent hyperparameters. The GSM kernel extends the SM kernel by
allowing the hyperparameters w,, v4, and (i, to be a function of an input index « € R. Each hyperparameter can be

written as wg(z), vy () and piq(z). We set I, (x) = v,(x) /2 for notation convenience.

These functions are assigned independent GP priors with a zero mean function and a covariance matrix given by RBF
kernels as follows:

logwy(z) ~ GP(0, ky(z,2")),
logl,(z) ~ GP(0, ki(z, ")),
logitug(z) ~ GP(0, ky(x,2')).

The resulting GSM kernel is given by:

Q
kasm (i, @5) = > wq(:)wq () kaivns,q (24, 25) X cos (27 (g (w:)a; — pg(w)5))
q=1

where the Gibbs kernel [30] is defined as:

[ 2wl (ay) (: — ;)"
kGibbs,q(xiv xj) - \/WW P {—W"’W} '

The Gibbs kernel acts as a non-stationary counterpart to the squared exponential kernel, incorporating input-dependent
length scales. The GSM kernel above is written for inputs in R , but we can generalize it to multi-dimensional inputs
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xi,x; € RP using a product decomposition across dimensions:

D
kasm(xi,%;10) = ] kasm.a(wi.a, z5.4104),
d=1

where § = (1, ...,0p) represents the input dependent hyperparameters for each mixture 8; = (wgq, lqd, Mfld)?:l of
the N-dimensional realizations wgq, lqd, ftqd € RN per dimension d.

Due to the complex hierarchical structure of GPs with the GSM kernel, we can no longer perform maximum marginal
likelihood inference directly. This is because computing the marginal likelihood requires integrating out not only
the latent function f but also all input-dependent hyperparameter functions, making the integral intractable. As an
alternative, we employ maximum a posteriori (MAP) inference, where we maximize the log-posterior log p(f]y) o
log p(y|0) + log p(6), where p(y|0) is the marginal likelihood, integrating out only the function values f. This allows
us to perform gradient-based optimization, using numerical optimizers such as ADAM.

The final loss function is given by:

Q,D
£(6) = log <Ny 11 qudN#quqd)

g,d=1
where each component is
Ny =N(y|0,Kq+021)
qud N(wqd | 0, Ku,)
Nitga =N (pqa | 0, Kp,)
'/\/lqd =N(lga | 0, K3,).

Similar to the SM kernel, the GSM kernel introduces trade-offs, including the risk of overfitting and sensitivity to local
optima due to its many parameters. To mitigate this, we experiment with different numbers of mixtures and optimize
with multiple initializations to improve convergence.

2.3 Probabilistic performance evaluation

A proper metric to evaluate the performance of our proposed modeling framework is the negative log-predictive density
(NLPD), as it assesses both the mean and variance of the predictions by leveraging the probabilistic nature of GPs.
Lower NLPD means a more appropriately confident prediction capability of the GP model. The NLPD is calculated by
taking the negative logarithm of the predictive probability density of the future observations given the model:

N

1
NLPD = — =3 " log p(yi[xi, p(x:), 77)-
i=1

We evaluated the performance of RBF, SM and GSM kernels across three different training set sizes, using ten different
initializations to mitigate the risk of falling into a local optimum and ensure fair comparisons.

2.4 Non-probabilistic performance evaluation

For the best-performing out-of-sample scenario presented in Table[I] several criteria were used to demonstrate the
superiority of the proposed approach in forecasting wind power across multiple time steps both short-term and long-
term. Non-probabilistic performance metrics are also reported for completeness and comparability with conventional
benchmarks.

We base our comparison on the commonly used root mean square error (RMSE) and mean absolute error (MAE), defined
asRMSE = (n ™' Y7 (y; — pu(x))?)Y/? and MAE = n= 1 37" | |y; — pu(x;)|, respectively. In addition, we present
the normalized mean absolute percentage error (NMAPE), defined as NMAPE = n~! 3" | [[(y; — pu(x;))/C] x 100]
where C'is the rated power of the wind turbine equal to 2050 kW. Although these metrics offer valuable insights into
how well our model forecasts output power, they rely solely on the predicted means (x;) and are therefore beyond the
primary focus of this work.
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A more critical aspect of the problem under investigation is leveraging the probabilistic nature of the modeling
perspective. Therefore, the out-of-sample negative log predictive density score, discussed in [2.3] plays a more
significant role in evaluating the superiority of the proposed methodology.

Some of the metrics were computed cumulatively over time to evaluate long-term wind power forecasting, as shown
in Fig. [3] However, an important challenge was to assess the performance of our method in short-term wind power
forecasting. To evaluate short-term forecast performance, fixed one-hour windows were used to analyse how the metrics
evolve across different lead times.

3 Experiments

3.1 SCADA Data Overview and Filtering

The study utilizes SCADA and event data recorded at 10-minute intervals from a Senvion MM92 wind turbine located
at Kelmarsh wind farm in the UK [31]]. The dataset spans from January 3, 2016, to July 1, 2021, comprising over 1.7
million records across 110 variables, including date-time, wind speed and power output.

An operational status and events file was used to filter the data in order to improve the accuracy and reliability of the
wind power forecasting model. These files contain detailed information about the operational state of each wind turbine,
including events such as technical failures, standbys, and warnings triggered by either operational or environmental
factors. Data recorded during such events can distort the true relationship between wind speed and power output,
leading to inaccurate model training. To mitigate this, periods corresponding to standbys, warnings, and operational
stops were excluded. Additionally, data from the week leading up to each forced outage was removed to minimize the
inclusion of unstable turbine behavior before failure.

The impact of this filtering process is illustrated in Fig. [I] where the two power curves, i.e. output power versus wind
speed, are shown before and after data filtering.
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Figure 1: SCADA data power curve before and after removing standbys and warnings based on the operational status
and event files. The left panel shows the raw data, while the right panel displays the filtered data used for analysis.

We used wind speed as the input for all our analyses, with the goal of expanding the training set and better assessing the
performance of the GSM compared to the other two kernel types as the amount of training data increased.

3.2 Effectiveness of proposed model

In this section, we present the results of our proposed GP methodology using the GSM kernel, alongside the benchmark
kernels introduced in Sections 2.2.1] 2.2.2} the RBF and SM kernels.

Three filtered SCADA data subsets were used to evaluate the performance of each model. The first scenario consists
of 1,000 training data points and 2, 000 test data points. The second scenario uses 5, 000 for training and 10, 000 for
testing. To assess whether the proposed model benefits from increased training data, a third scenario was created with
7,000 training points and 10, 000 test points.

For each model in every scenario, we perform hyperparameter optimization using 10 random initializations and report
the average NLPD on the out-of-sample test set. This multiple-initialization strategy mitigates sensitivity to local
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optima, particularly for the high-dimensional GSM kernel, which has a more complex parameter space than RBF or
SM. The results are summarized in Table[T} Boxplots showing the average NLPD scores across all 10 initializations are
presented in Fig. 2] As described in Section[2.2.3] we use marginal likelihood inference for the RBF and SM kernels,
and MAP inference for the GSM kernel. The configuration of each GP prior is also shown in Table T}

Table 1: Training and test set sizes, along with out-of-sample average negative log-predictive density (NLPD) scores
for each scenario, averaged over 10 initializations. The best-performing model in each case is indicated in bold. The
configuration of each GP prior is also included.

Training and Testing Sets \ Average NLPD

Scenario  Training size  Testing size \ RBF SM GSM
1 1,000 2,000 795 795 747
2 5,000 10,000 7.59 759 1732
3 7,000 10,000 720 723 6.94
GP Prior configuration | RBF SM  GSM

No. of Mixtures - 3 2

No. of Parameters 3 10 13

GSM: generalized spectral mixture; NLPD: negative log predictive density;
RBF: radial basis function; SM: spectral mixture.
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Figure 2: Comparison of out-of-sample average NLPD performance for the GSM, SM, and RBF kernels across three
training and test set sizes over 10 initializations.

The results in Table [T]and Fig. 2] demonstrate that the proposed GSM kernel consistently outperforms the RBF and
SM kernels across all training set sizes in terms of out-of-sample average NLPD. This indicates that the non-stationary
properties captured by GSM are beneficial for modeling wind power data.

As the training set size increases, the average NLPD scores improve for all kernels, reflecting better generalization with
more training data. However, the GSM kernel shows the largest improvement between scenarios 2 and 3, suggesting
that it benefits more from additional training data than its stationary counterparts.
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3.3 Forecasting comparative results

We conduct a comparative analysis of the three kernel functions using the models trained on 7,000 observations,
evaluating their extrapolation performance across multiple forecasting horizons: short-term, medium-term, and long-
term. Results for the medium- and long-term horizons are shown in Fig[3] while short-term results are summarized
in Table 2] In terms of RMSE, the RBF, SM, and GSM kernels exhibit comparable performance across medium-
and long-term horizons, with minimal variation. However, based on the NLPD metric, the GSM kernel consistently
outperforms the others, indicating improved uncertainty quantification.
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Figure 3: Average RMSE and NLPD performance of RBF, SM and GSM kernels over increasing time horizons of
predictions for the best performing third scenario.

Of particular interest is the short-term forecasting performance, which is especially relevant for real-time grid stability
and operational applications. Table 2] presents the out-of-sample results over a 24-hour horizon, with forecasts evaluated
in hourly intervals beyond the last training point. The table reports multiple performance metrics, including 10-minute
MAE, RMSE, NLPD, and NMAPE averaged hourly.

From a probabilistic perspective, the GSM kernel consistently achieves lower NLPD scores across most of the hourly
intervals, confirming its superiority in capturing predictive uncertainty. This advantage becomes particularly pronounced
during periods of higher energy output, where more accurate uncertainty quantification is essential for reliable grid
integration. In the few intervals where GSM does not outperform in terms of NLPD, the total energy produced per hour
is comparatively low, indicating that low wind speed values were observed.

Moreover, the GSM kernel performs competitively or better across all non-probabilistic metrics (MAE, RMSE, and
NMAPE), further highlighting the benefits of modeling non-stationarity in wind power time series. This demonstrates
the necessity of the non-stationary GSM kernel within GP frameworks, especially in short-term forecasting, where
wind speed dynamics vary rapidly and predictive uncertainty plays a critical role in operational decision-making.
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Table 2: Out-of-sample performance metrics for different kernels in the short-term forecasting of active power output
(measured in kW). Units for each metric are indicated in parentheses beside the metric names. The total energy output
per hour (kWh) is also provided for each time window. The best-performing model in each case is shown in bold.
NMAPE is expressed as a percentage of the rated power (2050 kW).

| | Probabilistic metric | Non-probabilistic metrics

Hours Energy Average NLPD RMSE (kW) MAE (kW) NMAPE (%)
ahead (kWh) RBF SM GSM RBF SM GSM RBF SM GSM | RBF SM GSM
(1, 2] 62.81 4.89 5.01 4.86 31.64 34.10 31.21 27.96 29.87 27.91 1.36 146 1.36
2, 3] 38.68 4.38 4.37 441 14.69 15.22 11.45 12.53 12.05 9.03 0.61 059 044
(3, 4] 46.76 4.34 4.35 4.43 12.06 13.96 13.02 9.68 10.86 12.06 047 053 059
4, 5] 11.66 4.85 491 4.69 30.63 31.75 25.47 27.61 27.77 20.77 1.35 135 1.01
(5, 6] 43.19 4.71 4.67 4.60 26.81 25.68 22.09 21.49 19.98 17.07 1.05 097 0.83
6, 7] 18.63 4.43 4.42 4.39 16.86 17.17 10.03 15.10 15.15 8.34 074 074 041
(7, 8] 70.80 4.30 4.31 4.39 9.45 11.66 10.06 8.11 10.27 9.02 040 050 044
(8, 9] 50.94 4.28 4.27 4.40 7.70 8.69 10.69 6.18 6.75 9.34 030 033 046
9, 10] 53.65 4.62 4.63 4.68 24.24 24.53 25.44 18.64 18.37 21.16 091 090 1.03
(10, 11] 81.40 4.33 4.30 4.46 12.01 11.33 14.84 10.14 8.97 13.66 049 044 0.67
(11, 12] 33.62 4.55 4.59 4.50 21.80 23.50 17.21 20.21 21.72 13.23 099 1.06 0.65
(12, 13] 209.36 7.66 7.72 6.99 72.44 7143 70.34 58.38 57.05 55.85 285 278 272
(13, 14] 125.56 5.42 5.41 5.15 42.55 41.77 38.84 40.92 40.33 37.02 200 197 181
(14, 15] 50.97 4.65 4.73 4.60 25.09 27.51 21.97 23.86 26.26 19.58 1.16 128 0.96
(15, 16] 149.26 5.20 5.16 5.03 38.33 37.21 35.84 34.49 33.47 31.50 1.68 1.63 1.54
(16, 17] 265.84 5.95 5.94 5.62 51.27 50.09 48.83 43.61 41.92 40.88 2.13 204 199
(17, 18] 98.85 6.70 6.65 6.23 61.41 59.57 59.39 46.72 45.97 44.15 228 224 215
(18, 19] 138.56 9.10 9.11 8.17 86.34 84.49 84.43 75.87 74.85 73.35 3770 3.65 3.58
(19, 20] 281.45 13.72 1421 1197 | 120.61 120.67 119.19 | 117.48 117.20 116.09 | 5.73 572 5.66
(20, 21] 500.31 9.44 9.81 8.68 89.37 90.32 89.89 77.67 77.53 76.86 379 378 3.5
(21, 22] 352.23 8.31 8.76 7.72 79.08 81.39 79.33 69.51 71.63 69.55 339 349 339
(22, 23] 627.13 1192 1249 10.76 | 108.58 109.84 109.38 | 95.40 97.12 97.09 | 4.65 474 474
(23,24] | 1032.00 | 7.15 7.11 6.59 66.85 64.99 64.80 50.07 48.33 48.25 244 236 235

GSM: generalized spectral mixture; MAE: mean absolute error; NMAPE: normalized mean absolute percentage error; NLPD:
negative log predictive density; RBF: radial basis function; RMSE: root mean square error; SM: spectral mixture.

4 Conclusions

This work introduced a nonstationary GP framework for probabilistic wind power forecasting, employing the GSM
kernel to model time-varying dynamics in wind speed and power output. Using real-world SCADA data, the proposed
model demonstrated consistent improvements in both point prediction accuracy and uncertainty quantification compared
to standard stationary kernels across short-, medium-, and long-term forecasting horizons.

The results underscore the necessity of incorporating non-stationary modeling within GP frameworks for realistic
wind power forecasting. In particular, the GSM kernel provided better performance in short-term settings, where the
non-stationarity of wind patterns is most pronounced.
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