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ABSTRACT
We provide a condition monitoring system for wind farms, based on normal behaviour modelling using a probabilistic multilayer 
perceptron with transfer learning via fine-tuning. The model predicts the output power of the wind turbine under normal behav-
iour based on features retrieved from supervisory control and data acquisition (SCADA) systems. Its advantages are that (i) it can 
be trained with SCADA data of at least a few years, (ii) it can incorporate all SCADA data of all wind turbines in a wind farm as 
features, (iii) it assumes that the output power follows a normal density with heteroscedastic variance and (iv) it can predict the 
output of one wind turbine by borrowing strength from the data of all other wind turbines in a farm. Probabilistic guidelines for 
condition monitoring are given via a cumulative sum (CUSUM) control chart, which is specifically designed based on a real-data 
classification exercise and, hence, is adapted to the needs of a wind farm. We illustrate the performance of our model in a real 
SCADA data example which provides evidence that it outperforms other probabilistic prediction models.

1   |   Introduction

Due to the environmental and sustainability benefits, many 
energy producers have shifted their attention towards wind 
energy; one of the cleanest and fastest growing sources of re-
newable energy. However, the severe weather conditions and 
the often-remote locations of wind farms lead to both high op-
erational failure rates and high maintenance costs that account 
for 20%–30% of the total cost related to power generation [1]. 
There is therefore a need to reduce the high operational and 
maintenance costs of wind turbines via a cost-effective and 
high-precision condition monitoring system. Such a system is 
crucial for an early fault detection and thus minimisation of the 
prolonged wind turbine downtime.

While specific monitoring sensors can be employed to detect 
incoming faults, wind farm operators are sceptical of employ-
ing expensive technology without direct economic justifica-
tion [2]. Most wind farms have already been equipped with 
supervisory control and data acquisition (SCADA) systems. 
These systems record the operational status of individual 
wind turbines and all their components, such as wind speed, 
power, rotor speed and blade pitch angles. They produce large 
amounts of data, which are collected at a high frequency, for 
example, 1 Hz, and recorded as a 10-min averaged interval. 
Because these systems are already installed, monitoring per-
formance and predicting early faults by extracting features 
from SCADA data are a widely researched cost-effective mea-
sure of failure prevention.

Abbreviations: CUSUM, cumulative sum; LPMLP, large probabilistic multilayer perceptron; LSTM, long short-term memory; MAE, mean absolute error; MCE, maximum calibration error; 
NMAE, normalised mean absolute error; NRMSE, normalised root mean square error; PMLP, probabilistic multilayer perceptron; RBF, radial basis function; ReLU, rectified linear unit; RMSE, 
root mean square error; SCADA, supervisory control and data acquisition.  
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A typical approach to the problem is to produce a model that 
predicts the output power of a wind turbine under normal be-
haviour based on features retrieved from SCADA data; see, for 
example,  [3]. Then, one could monitor the wind turbine oper-
ation by using the model to inspect whether the observed and 
model-predicted output powers deviate in some statistical sense. 
Although this is a sensible, well-known approach, practical 
and effective condition monitoring of a wind farm requires a 
modelling perspective with four particular characteristics, out-
lined below.

First, to accommodate weather fluctuations, the model needs 
to be able to scale well with the data size because it requires 
to be trained for at least one calendar year which is 52,560 
ten-minute intervals. Second, it should be able to extract all 
the wealth of information available in the SCADA system 
which is expressed in a few dozen features per wind turbine 
per time interval. Third, the model needs to provide probabi-
listic predictions in the form of a predictive density and not 
only point estimates of output power so that a proper proba-
bilistic assessment of the deviation of the observed from the 
expected output power can be performed. The heteroscedastic 
nature of the predictions is also necessary to properly model 
the wind turbine output power because low and high wind 
speeds produce low variance power distributions. This im-
mediately requires that the predictive density has sufficiently 
good coverage probabilities in out-of-sample data scenarios. 
Last but not least, the model should be able to deal with the pe-
culiarities of wind farm SCADA data recording in the follow-
ing sense. It is common that historical SCADA data may have 
many missing data in a particular wind turbine because it was 
out of order for a long period of time or it has been recently 
installed. A good model should be able to predict the output 
power of this wind turbine with an inferential procedure that 
borrows strength from the features and output power of all 
other wind turbines in the wind farm.

We develop a condition monitoring system based on a model that 
has all the four necessary characteristics described above based 
on a probabilistic multilayer perceptron (PMLP) with transfer 
learning via fine-tuning. We assume that the output power 
follows a normal distribution with input-dependent mean and 
input-dependent variance which form our predictive density 
for each 10-min interval. For the probabilistic condition moni-
toring we propose the use of cumulative sum (CUSUM) control 
charts. We illustrate its performance in a real-data application 
by comparing it with two other probabilistic models: a sparse 
Gaussian process and a Bayesian neural network, as shown in 
Table 2. We found that our model predicts better with respect 
to root mean square error (RMSE), mean absolute error (MAE) 
and maximum calibration error (MCE). We demonstrate that by 
transfer learning, we can use information from all turbines in 
a wind farm to improve the prediction of the output power of 
a single wind turbine. We also provide a real-data example in 
which our proposed condition monitoring system expressed via 
a CUSUM control chart reveals an early warning in a particular 
wind turbine failure.

The rest of this paper is organised as follows. Section 2 contains 
related work, Section  3 presents the proposed methodology, 
Section 4 presents the empirical application, Section 5 discusses 

further developments and Section  6 concludes with our key 
findings.

2   |   Related Work

Our proposed modelling perspective is based on the notion of 
normal behaviour modelling, which attempts to produce, condi-
tional on SCADA input features, predictions of the output power 
of a wind turbine under healthy conditions and then diagnose 
possible anomalous performance by comparing the predicted 
and the observed output powers. This is an unsupervised learn-
ing strategy which differs from another strand of the literature 
that uses supervised learning and exploits fault instances ob-
tained from operational and events files from a SCADA system. 
Thus, in this section, we will only present related work from ar-
ticles on modelling normal behaviour. The more relevant to our 
work papers that use probabilistic predictions will be presented 
in subsection 2.2.

Normal behaviour modelling studies vary in their selection of 
the input features used to identify faults. Predictions are per-
formed to the output power [3–7], the generator's temperature 
[2, 8, 9], the gearbox bearings' temperature [2, 9–12] or multiple 
output variables [9, 13, 14].

2.1   |   Nonprobabilistic Normal Behaviour 
Modelling

A series of articles [2, 9–12, 14], proposed deep neural net-
works to model operational characteristics such as the tem-
perature of the gearbox bearings, cooling oil and winding 
temperature of the wind turbine. Autoencoders have been 
proposed by [15, 16] whereas generative adversarial networks 
combined with autoencoders have been used by [17]. Other 
methods include [8], who predicted the generator's tempera-
ture with a nonlinear state estimate technique, and [7], who 
proposed an adaptive neuro-fuzzy inference system to predict 
the output power.

2.2   |   Probabilistic Normal Behaviour Modelling

Due to their intrinsic probabilistic nature, Gaussian processes 
are common candidates for probabilistic normal behaviour 
modelling; see, for example,  [3–5]. The large impediment to 
their widespread application, namely, their computational com-
plexity which increases cubically with the data sample size, is 
usually being dealt with variational inference with inducing 
points [18]. However, different input features increase the hy-
perparameter dimension because proper implementation re-
quires different kernels in each dimension, which creates both 
convergence and kernel identification problems. Finally, al-
though the issue of heteroscedasticity can be solved by assum-
ing that the error process also follows a Gaussian process [19], it 
is extremely difficult to resolve all three issues above simultane-
ously. Finally, although multitask Gaussian processes is a mod-
elling perspective that simultaneously exploits the data of all 
wind turbines, the computational complexity increases quickly 
and treating missing values from one or more wind turbines 
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is not possible. The works of [19,20  ] have incorporated noise 
heteroscedasticity whereas the trade-off between heteroscedas-
ticity and computational complexity has been considered by [3]. 
Recently, [21] addressed the necessity of a probabilistic setting 
for power curve estimation by incorporating prior distributions 
on the weight parameters of a long short-term memory (LSTM) 
Bayesian neural network. They improve their model by using 
a temporal convolutional neural network for temporal feature 
learning and an embedding layer to map discrete features (e.g., 
integer years) to dense vectors. The predictions are obtained 
via Monte Carlo sampling. Finally, [22] considered the problem 
of predicting output power conditional on future wind speed 
and direction forecasts and adopted a modelling approach that 
closely resembles ours. They employed an improved deep mix-
ture density network by transforming the output energy to the 
interval (0,1) and obtained probabilistic power predictions by 
assuming that it follows a mixture of Beta distributions. As is 
similarly emphasised in our study, they highlighted the fact 
that informed decision-making is one of the key benefits of a 
probabilistic approach to wind power prediction.

3   |   Proposed Methodology

We present a modelling perspective guided by the need to 
provide a condition monitoring system that has immediate 
practical applications in any wind farm. We first describe a 
fully connected deep neural network that predicts both the 
mean and the variance of output power at a particular 10-min 
interval. The computational power of the neural network, 
together with the stochastic heteroscedastic output power, al-
lows the incorporation of many features obtained from large 
SCADA datasets that achieve good training based on as many 
as possible environmental and operational conditions and a 
statistically sound monitoring system based on both the mean 
and the variance of the power output. The final ingredient 
in our model that is hugely important and necessary in re-
alistic condition monitoring systems is the incorporation of 
transfer learning which is simultaneously trained in all wind 
turbines in a wind farm. Finally, we present a realisation of 

our proposed probabilistic condition monitoring system based 
on a CUSUM control chart. The overall flowchart of the pro-
posed probabilistic condition monitoring system is presented 
in Figure 1.

3.1   |   PMLP

To model a heteroscedastic output noise, we assume that for 
each 10-min interval, the power output of a wind turbine y con-
ditioned on the SCADA input features x ∈ℜ

d0 follows a normal 
distribution with unknown mean and variance that both depend 
on x, so y ∼ (�(x), �2(x)). We will approximate �(x) and �(x) 
by a PMLP with branching prediction heads. We now describe 
the architecture of our proposed model.

Given an input vector x = (x1, x2, … , xd0 ) that represents the 
d0 SCADA input features at a particular time interval, the pre-
dicted PMLP power output ŷ ∈ℜ follows a normal density with 
parameters �(x) and �2(x) which are continuous functions of the 
inputs x. In fact, our proposed PMLP models �(x) as a linear 
piecewise function of x and �(x) as a nonlinear piecewise func-
tion of x.

For a number of k hidden layers with widths d1, d2, … , dk and 
input and output dimensions d0 and dk+1 = 1, respectively, we 
adopt the linear functions gi:ℜ

di−1
→ℜ

di for i = 1, … , k defined 
as 

where Wi ∈ℜ
di×di−1 , x ∈ℜ

di−1 and bi ∈ℜ
di. Furthermore, we 

adopt the rectified linear unit (ReLU) function ReLUi:ℜ
di
→ℜ

di 
defined as 

and the Softplus function S:ℜ→ℜ defined as 

gi(x) =Wix + bi,

ReLUi(x) = (max{0, x1}, max{0, x2}, … , max{0, xdi}),

(1)S(x) = log(1 + ex) + �,

FIGURE 1    |    Overall flowchart of the proposed probabilistic condition monitoring system. LPMLP: large probabilistic multilayer perceptron, pre-
sented in Section 3.2.
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for a small 𝛿 > 0 used for numerical stability needed when x be-
comes very small. These three functions are the basic ingredi-
ents of our PMLP, but we note that the functions ReLU  and S can 
be replaced by any other appropriate alternative.

We now define the branching structure of the PMLP. We use 
two sets of functions g and ReLU , corresponding to predic-
tions of �(x) and �(x) and indexed by the superscripts � and 
�, respectively. Different functions g have different sets of pa-
rameters Wi,bi where by different functions ReLU  is meant 
that they operate on different dimensions di. We further as-
sume that there exist two corresponding numbers of hidden 
layers k� and k� with widths d�

1
, d�

2
, … , d�

k�
 and d�1 , d

�
2 , … , d�k�

. 
Then, the output ŷ  of the PMLP with k� and k� hidden layers 
is represented as 

where ◦ denotes the function decomposition operator.

The branching mode of the PMLP is achieved by setting a layer 
k∗ such that 1 ≤ k∗ ≤min{k� , k�} and setting 

for all 1 ≤ i ≤ k∗. Thus, before the k∗ th layer, there is a common 
deep neural network; after the k∗ th layer, the network branches 
into two paths for predicting �(x) and �(x) with each path hav-
ing its own sequence of hidden layers with potentially different 
widths and depths. Note that the total sum of hidden layers 
is ktotal = k� + k� − k∗.

In the application presented in Section  4, we compare two 
network architectures, A1 and A2. Architecture A1 is defined 

by k� =k� =4, k
∗ =3, d0=41, d

�

1
=d�

1
=100, d

�

2
=d�

2
=80, d

�

3
=d�

3

=40, d
�

4
=d�

4
=20, and architecture A2 by k� =k� =3, k

∗ =3,

d0=41, d
�
1
=d

�

1
=300, d�

2
=d

�

2
=200, d�

3
=d

�

3
=100. A visual rep-

resentation of these architectures is provided in Figures 2 and 
3, respectively. We incrementally built these architectures by 
inspecting loss functions on training and testing data.

The training of the PMLP is achieved by solving the follow-
ing empirical risk minimisation problem. Given n data points 
(xi, yi) ∈ℜ

d0 ×ℜ, i = 1,2, … ,n, and number and widths of the 
hidden layers, find ŷi that is represented with an PMLP and min-
imises minW,b1, where W = {Wi}

ktotal
i=1

, b = {bi}
ktotal
i=1

 denoting all 
parameters, and 1 is a loss function. By assuming independence 
between ŷi, the product of normal densities 

∏n
i=1 (�(xi), �

2(xi)) 
can be viewed as a multivariate predictive density so a plausible 
loss function for our PMLP is the minus logarithmic score; see, 
for example, [23], defined as 

where  (y|�, �) denotes the p.d.f. of a normal density with 
mean � and variance �2 evaluated at y.

3.2   |   Transfer Learning via Fine-Tuning

The realistic application of condition monitoring of a wind 
turbine should necessarily take into account the fact that the 
wind turbine is part of a wind farm. Thus, instead of training 
a model for each wind turbine separately, we could use the 
PMLP model of Section 3.1 to train all wind turbines simulta-
neously. No particular care is needed other than treating the 
data so that the corresponding feature values of each wind 
turbine correspond to the power output of this wind turbine: 
our proposed PMLP treats the power output conditional on the 
corresponding features of each 10-min period independently 
of the power outputs of the other 10-min periods. Therefore, 
we can apply model (2) to all wind turbines of the wind farm 

(2)

�(x) = g�
k�+1

◦ReLU�

k�
◦g�

k�
◦… ◦g�

2
◦ReLU�

1
◦g�

1
(x)

�(x) =S◦g�
k�+1

◦ReLU�
k�
◦g�

k�
◦… ◦g�2◦ReLU

�
1◦g

�
1 (x)

ŷ ∼ (�(x), �2(x)),

ReLU�

i
(x) =ReLU�

i (x),

g�
i
(x) = g�i (x),

d�
i

=d�i ,

(3)1 = −

n∑

i=1

log
(
 (yi|�(xi), �2(xi))

)
,

FIGURE 2    |    Architecture A1 used in the application of Section 4 for both PMLP and LPMLP with shared initial layers and independent branches 
for mean and standard deviation.
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by just denoting x as the features from all wind turbines and 
ŷ  as a vector power output for a particular 10-min period. The 
loss function (3) is just the sum of log-normal densities of each 
wind turbine at each 10-min interval. The mathematical for-
mulation of this model is as follows.

Let xij be the input feature vector of the j th wind turbine at the 
i th 10-min interval with corresponding output power yij. Then, 
the model is defined as 

If we have data for nj time intervals for wind turbine j for 
j = 1, … , J, the loss function of model (4) is 

Notice that the possibly different number of available data nj 
from each wind turbine indicates that this model utilises all 
available data from all wind turbines. This is of huge practical 
importance in realistic applications because SCADA data typi-
cally contain many missing data.

However, by training all data of wind farms in the same model, 
the amount of available data may become prohibitively vast to 
allow frequent retraining. The usual treatment of such huge 
datasets is to adopt some transfer learning techniques so that 
knowledge gained from pretraining the model based on all 
wind turbines data can be used to boost performance in pre-
dicting the power of a single wind turbine. We call such a PMLP 
model that uses pretraining based on loss function 2 and then 
predicts the power of only one wind turbine using fine-tuning 
and the loss function 1 a large PMLP (LPMLP) model. When 

new data arrive, retraining of the PMPL model based on 2 is 
not anymore necessary. Moreover, additional important practi-
cal advantages arise. First, consider the very realistic scenario 
in which a wind turbine has fewer data points because, for ex-
ample, it has been out of order for a long period of time or has 
been recently installed. Normal behaviour modelling of this 
wind turbine might be very hard or even impossible to achieve. 
Our LPMLP model is capable of producing a predictive density 
for such low-information wind turbines by using the data from 
all wind turbines in the wind farm. Second, transfer learning 
can be used to improve the predictive power of model (2) as we 
empirically show in Section 4.

Our proposed transfer learning is achieved via the following 
fine-tuning. We first train the LPMLP model  (4) with the loss 
function  (5). Then, we use the parameters of the pretrained 
model as initial values, and we predict the mean and standard 
deviation of the output power of the wind turbine we are inter-
ested in. Thus, the training uses the loss function (3) that refers 
to one only wind turbine and is achieved very fast. We apply 
this training method to both the A1 and A2 architectures to in-
vestigate whether additional parameters, combined with a pre-
training phase, provide greater benefits to the model compared 
to pretraining alone. Specifically, architectures A1 and A2 differ 
in their branching and number of parameters, which are 16,508 
and 91,002, respectively.

For the advantages of transfer learning in similar problems, see, 
for example, [24]. Notable theoretical and empirical motivations 
for introducing transfer learning in the given probabilistic regres-
sion context include (i) regularisation: pretraining the LPMLP 
allows learning general features and patterns from a larger 
amount of data which can be especially beneficial in the case 
where the operating conditions of the wind farm are extremely 
diverse. Thus, it is easier for the model to deal with conditions 
that have not been observed in the particular wind turbine under 
inspection; (ii) data sparsity: pretraining on the whole data of a 
wind farm dataset can help alleviate data sparsity by providing 

(4)

�(xij) = g�
k�+1

◦ReLU�

k�
◦g�

k�
… ◦g�

2
◦ReLU�

1
◦g�

1
(xij),

�(xij) =S◦g�
k�+1

◦ReLU�
k�
◦g�

k�
… ◦g�2◦ReLU

�
1◦g

�
1 (xij),

ŷij ∼ (�(xij), �
2(xij)).

(5)2 = −

J∑

j=1

nj∑

i=1

log
(
 (yij|�(xij), �2(xij))

)
.

FIGURE 3    |    Architecture A2 used in the application of Section 4 for both PMLP and LPMLP with shared initial layers.
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additional data for learning more general but not yet observed 
representations. For example, see [25] for a discussion of limited 
data availability for newly built wind farms; and (iii) improved 
convergence: pretraining the LPMLP facilitates faster converge 
during fine-tuning on a single wind turbine.

3.3   |   Condition Monitoring

The reason that we propose the PMLP and LPMLP mod-
els which have a probabilistic flavour by predicting both the 
mean and the variance of the output power is to construct a 
reasonable, probability-based, data-driven condition monitor-
ing system. This system has the usual ingredients that consist 
of first training the model during a healthy wind turbine oper-
ation and then observing both SCADA and output power data. 
Anomalous operational behaviour is reported when the ob-
served output power departs, in a probabilistic sense, from the 
expected predicted normal density under the trained model. 
Our condition monitoring system is based on testing model 
adequacy by testing the hypothesis that the observed output 
power observations have been generated by our trained model. 
This requires, of course, some evidence that our model has suf-
ficiently good coverage probability so that in an out-of-sample 
healthy wind turbine environment, the observed power out-
put indeed follows the normal density indicated by the trained 
model. As it will be evident in our application study, our pro-
posed PMLP and LPMLP models do indeed have good cover-
age probabilities in an out-of-sample large empirical exercise.

Assume that the model training phase has ended, and we 
are now in the live condition monitoring phase. To empha-
sise that the data are observed sequentially in time, we will 
be now using a subscript t  rather than i for the time inter-
vals. Assume that we observe T consecutive power outputs 
yt, t = 1,2, … ,T, and we have predictions from our model 
N(�(xt), �

2(xt)). Under the hypothesis of model adequacy, or 
no-fault, we define vt = (yt − �(xt))∕�(xt) and test whether the 
sample vt, t = 1,2, … ,T comes from a N(0,1) distribution. For 
example, we could perform a test over 72 h with 10-min inter-
vals, where T = 432.

We propose a two-sided tabular CUSUM control chart [26] de-
fined as

and

where SH(0) = SL(0) = 0. The reference (or allowance or slack) 
value of k is traditionally specified with past experience or 
from simulations based on supervised settings. A common 
choice is about halfway between the target mean zero and 
the out-of-control value that we are interested in detecting 
quickly. Therefore, if we are interested in detecting a devi-
ance of one standard deviation, a plausible choice is k = 1∕2; 
see [26]. Recent advances propose an adaptive adjustment of 
its value [27]. Note that SH(t) and SL(t) are viewed as cumula-
tive deviations from zero that are greater than k that are not 

allowed to take negative values. If either of them exceeds a 
decision interval I, the process is considered to be out of con-
trol. A reasonable choice of I is five times the process stan-
dard deviation [26] which is one in our case, suggesting I = 5

. In practice, to define the decision interval I according to the 
needs of the wind farm, I can be estimated from empirical 
data to achieve the desired combination of recall and preci-
sion. In Section  4.3, we present an illustration in which we 
evaluate the model's performance in terms of precision and 
recall. These metrics are defined as precision = TP∕(TP + FP) 
and recall = TP∕(TP + FN) where TP, FP and FN  denote the 
number of true positives, false positives and false negatives, 
respectively. For t = 1, … ,T, the test statistics are defined as 
AHt = max

{
SH(i), i = 1, … , t

}
 and ALt =max

{
SL(i), i = 1, … ,T

}

. The null hypothesis of normal operation in the wind turbine 
is rejected (with a one-sided test) if An =max

(
At: 1 ⩽ t ⩽ n

)
 ex-

ceeds its upper critical value, where At =max
(
AH
t ,A

L
t

)
.

4   |   Experiments

4.1   |   Data Acquisition and Filtering

The application utilises 10-min SCADA and events data from 
the six Senvion MM92 wind turbines at Kelmarsh wind farm 
in the United Kingdom [28]. The dataset spans from 3 January 
2016 to 1 July 2021 and comprises over 1.7 million data points 
containing 110 variables including date–time, wind speed, bear-
ing temperature and power output. The data include 10-min 
averages, standard deviations and minimum and maximum val-
ues of all measured variables. The recording of wind speed sum-
mary statistics started at 25 September 2017, so we considered 
only data entries from this date onwards.

An operational status and events file was utilised for data filter-
ing to ensure consistent modelling of normal behaviour. These 
files provide valuable insights into the operational conditions of 
the wind turbines, covering a range of scenarios from technical 
failures to operational or environmental standbys and warnings. 
To enable accurate behaviour modelling, it was essential to re-
move out-of-control condition data records and base our model 
training solely on filtered data. For filtering, periods of standby, 
warnings and operational stops were excluded. Furthermore, 
data from the week preceding each forced outage was removed 
to reduce the likelihood of including out-of-control events in 
the training set. The data elimination process is illustrated in 
Figures 4 and 5 where plots of output powers against wind speeds 
are depicted for each wind turbine before and after the filtering.

All our analyses used as input features 41 operational and envi-
ronmental variables are listed in Table 1. The final filtered data-
set across the six wind turbines comprises 846,968 data points, 
with 163,562 of them belonging to one single wind turbine used 
in the application Section 4.2.

4.2   |   Application

For all our experiments, we used a chronologically selected 
80–20 data ratio for the train and test data, respectively. When 
a validation set was required, the train-validation data ratio 

SH(t) =max
{
0, vt − k + SH(t − 1)

}
,

SL(t) =max
{
0, − k − vt + SL(t − 1)

}
,
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7 of 12

was 72–8. To select the validation set, the training set was ini-
tially shuffled to ensure that data from different seasons were 
included in the validation set. The PMLP and LPMLP models 
were trained using the Adam optimiser with a learning rate of 
0.001, a batch size of 32 and 100 and 500 epochs respectively. 
This was done for both A1 and A2 architectures. Additionally, 
the LPMLP models were fine-tuned for 50 epochs using learn-
ing rates of 10−3 and 10−4 for A1 and A2, respectively. The 
Softplus activation function (1) used a � = 0.001. Early stopping 
on a validation set was employed during all training stages. All 
results refer to the out-of-sample prediction of the output power 
of only one randomly chosen wind turbine of the wind farm.

To evaluate the proposed probabilistic PMLP and LPMLP 
modelling frameworks, we compared their performance to 
other probabilistic methods. In particular, we used a Gaussian 
process regression and a Bayesian neural network with sto-
chastic output. The Gaussian process inference was based 
on variational inference with inducing points [29] using a 
radial basis function (RBF) kernel and 100 pseudoinputs. 
This approximate inference procedure was used because 
the large sample size required low computational complex-
ity methodologies, a problem quite useful in Gaussian pro-
cess literature; see, for example,  [18]. In particular, the time 
complexity goes from (n3) of traditional Gaussian processes 

FIGURE 4    |    Real-data wind power curves for all six wind turbines at Kelmarsh wind farm before removing standbys and warnings existing in 
the operational status and event file.

FIGURE 5    |    Real-data wind power curves for all six wind turbines at Kelmarsh wind farm after removing standbys and warnings using the oper-
ational status and events file provided by the data provider [28].
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8 of 12 Wind Energy, 2025

to (n ⋅m2) when using variational inference with inducing 
points, where m is the number of inducing points such that 
m < < n. The Bayesian neural network was defined as a set 
of fully connected layers with mean field normal hierarchi-
cal priors with mean and standard deviation having  (0, 0.1) 
and  (S(0.001), 0.1) hyperpriors, respectively; here, S is the 
Softplus function defined in  (1) with � = 0. It was trained 
using the Flipout method which remodels the stochastic vari-
ational inference implementation strategy as a weight pertur-
bation [30] over 100 epochs using early stopping with the loss 
given by (3). The time complexity of training Bayesian neural 
networks and PMLPs is upper bounded by (n ⋅ e ⋅ k) where n 
is the number of training data points, e is the number of ep-
ochs trained and k is the number of neurons in the networks.

The results shown in Table  2 are based on 130,849 and 32,713 
training and test 10-min intervals respectively. Note that the 
models have been trained with SCADA data which have the 
size of nearly 3 years of wind turbines operation. We base our 
comparison with the usual root mean square and mean abso-

lute error defined as RMSE =
�
n−1

∑n
i=1

�
yi−�(xi)

�2�1∕2 and 

MAE = n−1
∑n

i=1 �yi − �(xi)�, respectively. We also present 
the RMSE and MAE metrics normalised by the rated power 
(2050 kW) to provide a clearer assessment of algorithm perfor-
mance. Although these metrics provide a good indication on how 
well our model predicts the output power, it is based only on the 
predicted means �(xi). An issue of more importance to our con-
dition monitoring methodology is the out-of-sample coverage 
probabilities that are defined as the probabilities that a confidence 
interval region will include the true power output. These are em-
pirically estimated in our test data and shown in Figure 6 where 
the calibration error, defined as the difference between observed 
and theoretical coverage probabilities are plotted for all six models 
and for twenty different intervals. The maximum calibrated error, 
representing the maximum observed deviation, along with the 
95% and 99% coverage probabilities, is reported in Table 2.

TABLE 1    |    SCADA operational and environmental variables used as 
input features in the proposed models.

Feature description Feature description

Avg. wind speed Avg. front bearing temp.

Stdev. wind speed Stdev. front bearing temp.

Min. wind speed Min. front bearing temp.

Max. wind speed Max. front bearing temp.

Avg. rear bearing temp. Avg. rotor bearing temp.

Stdev. rear bearing temp. Avg. stator1 temp.

Min. rear bearing temp. Avg. nacelle ambient temp.

Max. rear bearing temp. Avg. nacelle temp.

Avg. transformer temp. Avg. gear oil temp.

Avg. gear oil inlet temp. Avg. drive train acceleration

Avg. top box temp. Avg. hub temp.

Avg. conv. ambient temp. Avg. transformer cell temp.

Avg. motor axis1 temp. Avg. motor axis2 temp.

Avg. CPU temp. Avg. blade angle pitch A

Avg. blade angle pitch B Avg. blade angle pitch C

Avg. gear oil inlet press Avg. gear oil pump press

Tower acceleration x Tower acceleration y

Sine avg. wind speed dir. Sine max. wind speed dir.

Cosine avg. wind speed dir. Cosine max. wind speed dir.

Sine min. wind speed dir. Stdev. wind speed dir.

Cosine min. wind speed dir.

Abbreviations: Avg: average; dir: direction; Max: maximum; Min: minimum; 
Stdev: standard deviation; temp: temperature.

FIGURE 6    |    Calibration error of twenty binned confidence levels including the 95% and 99% confidence intervals.  sparse Gaussian process (RBF 
kernel);  PMLP with architecture A1;  PMLP with architecture A2;  Bayesian neural network;  LPMLP with architecture A1;  LPMLP with 
architecture A2.
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Note that the architectures of A1 and A2 in the PMLP and 
LPMLP models differ, as described in Section  3.1 and illus-
trated in Figures 2 and 3. By employing these two architectures, 
which were designed based on an inspection of the loss func-
tions during training and testing, we investigated the influence 
of the number of layers and neurons, branching and activation 
functions. For our empirical exercise, it is of particular inter-
est to investigate whether the scaling of the architecture or the 
transfer learning is the actual cause of the model performance 
improvement. To illustrate this, Table  2 and Figure  6 present 
the results of both the PMLP and LPMLP models with architec-
tures A1 and A2.

By controlling the network architecture, there is evidence 
that pretraining improves both RMSE and MAE metrics. 
Additionally, our proposed configuration outperforms the sparse 
Gaussian process across all metrics while significantly reduc-
ing training times. For instance, using an Intel Core i7-10510U 
CPU, the sparse Gaussian process required 168 min of training, 
compared to only 6 min for the Bayesian neural network. The 
PMLP with architecture A1 required 35 min, while the PMLP 

with architecture A2 completed training in 25 min. Similarly, the 
LPMLP with architecture A1 underwent pretraining for 79 min 
and fine-tuning for 8 min, whereas the LPMLP with architecture 
A2 was pretrained for 103 min and fine-tuned for 2 min.

We illustrate our proposed unsupervised method for condition 
monitoring using two different examples, one in which the ex-
amined wind turbine is operating normally and one in which the 
process is observed to be out-of-control; the results of these ex-
amples are presented in the CUSUM control charts of Figures 7 
and 8, respectively. In both cases, observations obtained over 
72 h, consisting of T = 432 10-min intervals, are monitored using 
CUSUM control charts. Figure 7 presents a typical situation of a 
good operation of a wind turbine.

In contrast, Figure 8 shows that the CUSUM control chart indi-
cates the process is out-of-control for the first time at 04:50 AM 
on the 30 June 2020. By inspecting the operational status and 
event file of this wind turbine, we identified a triggered alarm 
on the 2 July 2020 at 13:35 PM, related to a forced outage caused 
by a converter error.

TABLE 2    |    Out-of-sample performance metrics related to the prediction of active power output (measured in kW).

Methods RMSE (kW) MAE (kW) NRMSE (%) NMAE (%) MCE (%) 95% CP (%) 99% CP (%)

Sparse Gaussian process 49.57 33.87 2.42 1.65 6.94 88.03 93.20

Bayesian neural network 40.28 22.54 1.96 1.10 3.63 91.79 97.18

PMLP—A1 architecture 28.97 15.94 1.41 0.78 3.74 92.21 97.52

PMLP—A2 architecture 28.84 15.94 1.41 0.78 2.54 92.57 97.48

LPMLP—A1 architecture 27 .38 14 .81 1 .34 0 .72 0 .93 94 .56 98 .40

LPMLP—A2 architecture 27.52 14.91 1.34 0.73 2.17 93.09 97.89

Note: The units for each metric are indicated in parentheses next to the metric names. Best performance is indicated in bold. NRMSE and NMAE are expressed as 
percentages of the rated power (2050 kW).
Abbreviations: CP: coverage probability; LPMLP: large probabilistic multilayer perceptron; MAE: mean absolute error; MCE: maximum calibration error; NMAE: 
normalised mean absolute error; NRMSE: normalised root mean square error; PMLP: probabilistic multilayer perceptron; RMSE: root mean square error.

FIGURE 7    |    CUSUM control chart for 72 h during normal wind turbine behaviour. In the chart, ( ), ( ), ( ) and ( ) represent I, − I, SH 
and − SL.
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10 of 12 Wind Energy, 2025

4.3   |   Choice of Decision Interval

A practical way to select the decision interval I for the CUSUM 
control charts is to inspect historical data and choose an I value 
that achieves the desired balance between false negatives and 
false positives. Unfortunately, such analysis is not possible for 
our experimental data because a detailed list of operational 
anomalies is unavailable: Out of approximately 163K recordings, 
only 22 faults have been reported. However, we present here a 
pathway for selecting I. This analysis is based on the LPMLP 
architecture A1, using precision and recall metrics to evaluate 
the effectiveness of fault detection.

We evaluated the performance of the LPMLP model across dif-
ferent values of I. To obtain balanced data for our classification 
exercise, we used 22 randomly selected 72-h periods of normal 

operation and twenty-two 72-h periods during which forced out-
ages were recorded in the operational status and event files. The 
forced outages were caused by various factors, the most common 
being tower oscillation faults, which could potentially lead to 
structural damage and errors in the generator-converter system. 
Less commonly observed issues included yaw and/or fan over-
load faults caused by overheating or excessive electrical load, as 
well as faults due to malfunctions in pitch control systems, which 
could result in potential blade damage and mechanical stress.

The results for the precision and recall metrics for different val-
ues of I are presented in Figure 9. A visual inspection of this plot 
indicates the optimal choice of the decision interval, depending 
on the desired sensitivity of the monitoring system to precision 
and recall values. For example, based on Figure 9, a good com-
promise is the value I = 15, where the precision is 0.68 and the 

FIGURE 8    |    CUSUM control chart for 72 h prior to an operational fault started on the 2 July 2020 at 13:35 PM. In the chart, ( ), ( ), ( ) 
and ( ) represent I, − I, SH and − SL. The process starts to be out of control for the first time on 30 June 2020 at 04:50 AM.

FIGURE 9    |    Precision and recall scores for the LPMLP architecture A1 performance with varying parameter I values. The plot illustrates the 
performance metrics alongside the mean notice time in hours for fault cases. The shaded area represents the first and third quartiles of notice times 
for different values of I.

 10991824, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/w

e.70012 by A
thens U

niversity E
conom

ics &
 B

us, W
iley O

nline L
ibrary on [03/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



11 of 12

recall is 0.77. This successfully identifies, in the out-of-sample 
test data, 17 out of 22 instances of faults. Notably, the average 
lead notice time for anomaly detection by our monitoring system 
is 15.49 h, with a standard deviation of 21.76 h.

5   |   Discussion

When the condition monitoring system identifies malfunction, 
such as the one in Figure 8, the engineers in the field would like 
to identify which component of the wind turbine is causing the 
problem. To achieve this, we could extend our method to monitor 
different variables of the SCADA inputs, such as temperatures or 
pressures across various parts of the wind turbine. An obvious way 
to achieve this is to replicate our methodology by replacing the out-
put power with another variable. A complete condition monitoring 
system would thus be a collection of CUSUM control charts with 
different outputs modelled with different LPMLP models.

A further methodological direction would be to replace the fine-
tuning of LPMLP which is based on parameter initialisation; 
see, for example, [31]. We could use the parameter estimates of 
a pretrained model to construct informative prior distributions 
for transfer learning. Then, highly informative posteriors will 
be available for the model that predicts the power of one sin-
gle wind turbine. This is, in essence, a Bayesian neural network 
with informative priors that replace the vague priors we used in 
our application.

6   |   Conclusion

We presented a condition monitoring system that can be im-
mediately applied to a wind farm. We took particular care to 
accommodate issues that are routinely met in pragmatic wind 
farm operations. In particular, all SCADA data from all wind 
turbines collected in many years can be used to train our model. 
Our monitoring system has the ability to incorporate wind tur-
bines that have many missing data. It is based on a model that 
produces heterogeneous predictive densities that are well suited 
to wind turbine data; its probabilistic nature provides a scientif-
ically sound monitoring system that produces automatic moni-
toring of a wind farm in the form of a control chart.

For the data we used, our probabilistic model outperforms other 
probabilistic methods in terms of RMSE and MAE and has good 
coverage probabilities in large out-of-sample empirical exercises. 
Although it is an unsupervised monitoring system, we were able 
to illustrate its immediate applicability by inspecting the fault 
events file after an anomaly is detected.

Future research involves investigating ways to incorporate a fur-
ther step that will identify which operational characteristic of the 
wind turbine caused the anomaly detected by the control chart.
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